图神经网络
简单介绍
现实世界中并不是所有的事物都可以表示成一个序列或者一个网格,例如社交网络、知识图谱、复杂的文件系统等(图2),也就是说很多事物都是非结构化的。 相比于简单的文本和图像,这种网络类型的非结构化的数据非常复杂,处理它的难点包括:
- 图的大小是任意的,图的拓扑结构复杂,没有像图像一样的空间局部性
- 图没有固定的节点顺序,或者说没有一个参考节点
- 图经常是动态图,而且包含多模态的特征
相比较于神经网络最基本的网络结构全连接层(MLP),特征矩阵乘以权重矩阵,图神经网络多了一个邻接矩阵。计算形式很简单,三个矩阵相乘再加上一个非线性变换(图3)。
因此一个比较常见的图神经网络的应用模式如下图(图4),输入是一个图,经过多层图卷积等各种操作以及激活函数,最终得到各个节点的表示,以便于进行节点分类、链接预测、图与子图的生成等等任务。
上面是一个对图神经网络比较简单直观的感受与理解,实际其背后的原理逻辑还是比较复杂的
几种经典图神经网络
https://www.modb.pro/db/432816